
The tool of thought for software solutions

Dyalog
Code Libraries

Reference Guide
Version 16.0

Dyalog Limited

Minchens Court, Minchens Lane
Bramley, Hampshire

RG26 5BH
United Kingdom

tel: +44(0)1256 830030
fax: +44 (0)1256 830031

email: support@dyalog.com
http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982-2017

mailto:support@dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982 - 2017 by Dyalog Limited.
All rights reserved.

Version 16.0

Revision: 20160627_160

No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog
Limited, Minchens Court, Minchens Lane, Bramley, Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

SQAPL is copyright of Insight Systems ApS.
UNIX is a registered trademark of The Open Group.
Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
All other trademarks and copyrights are acknowledged.

Contents

INTRODUCTION . 1

CORE L IBRARY . 2
Tool (Library/Core) ... 2
APLProcess (Library/Core) ... 3
FtpClient (Library/Conga) .. 3
HttpCommand (Library/Conga) ... 4
HttpUtils (Library/Conga) ... 5

GITHUB L IBRARIES NOT INSTALLED WITH V16.0 . 5
Math (https://GitHub.Com/Dyalog/Math) .. 8
MiServer (https://GitHub.Com/Dyalog/MiServer) ... 8
APLPi (https://GitHub.Com/APLPi) ... 8

FOREIGN FUNCTION INTERFACE . 9
Calls to the Windows API .. 9

QuadNA workspace .. 9
OLE .. 10

Loan workspace .. 10
CFiles workspace .. 10
DCOMReg workspace .. 10
OLEAuto workspace .. 10
OLEAsync workspace .. 10
Shortcut workspace ... 10

DEVELOPMENT TOOLS . 11
BuildSE workspace ... 11
Display workspace .. 12
Math workspace .. 14
Util workspace .. 15

DFNS . 17
DDB workspace .. 17
dfns workspace ... 17
Eval workspace ... 17
Min workspace.. 17
Max workspace ... 17
Tube workspace .. 17

GRAPHICAL USER INTERFACES . 18
Windows GUI .. 18

Arachnid workspace ... 18
CPro workspace .. 18
WDesign workspace ... 18
WIntro workspace ... 19
WTutor workspace .. 19
WTutor95 workspace .. 19

OBJECT ORIENTATION . 20
OO4APL folder .. 20

PRESENTATION . 21
SharpPlot .. 21

STORAGE . 22
DDB workspace .. 22
Files workspace .. 23
SQAPL workspace .. 24

THREADS . 25
Lift workspace .. 25

Introduction

There is a growing collection of tools, samples and other code created for Dyalog
APL, that can be used to improve productivity when writing applications, and to
facilitate learning about features of Dyalog APL.

Historically, this document has provided an overview of the “workspaces” shipped
with Dyalog APL. Version 16.0 is a watershed release, in that nearly all the new APL
code that has been produced for this version is in Unicode text files rather than the
old binary workspace format.

Some of the most widely used tools will continue to be included with the installation
package as described in this document, but many new tools are most easily accessed
via the public GitHub repositories where the code is maintained. There are a couple
of web pages worth bookmarking:

http://www.dyalog.com/library An overview of tools with links to
documentation and downloads.

https://github.com/Dyalog The entry point on GitHub to all the open
source projects, including many tools.

Over time, we expect to reduce the number of binary workspaces shipped, and move
in the direction of distributing all tools as source files. As the community becomes
more comfortable with GitHub, we also expect to decouple the release cycle for tools
completely from the interpreter release cycle.

This document is intended to provide an overview of the most important tools that
are either shipped as part of the version 16.0 installation, or available on GitHub. The
materials are labelled as follows.

U S E This code is offered by Dyalog for common tasks. You
should find it runs efficiently and reliably.

S T U D Y This code is offered for study as examples of how to write
certain kinds of programs, such as a GUI, or as tutorials.
Some of it supports descriptions in other manuals, such as
the Interface Guide. It is not generally optimised for any
performance characteristics, but written primarily for
clarity.

A R C H I V E These workspaces contain solutions to problems now
rarely encountered, or for which different solutions are
now recommended. They are provided for continuity.

http://www.dyalog.com/library
https://github.com/Dyalog

 Dyalog Code Libraries Reference Guide 2

Core Library

U S E Version 16.0 marks the beginning of a new set of utility libraries, based on scripts. A
new folder called Library (below the main Dyalog folder) contains the utilities that
we believe will be widely used, and will become a new core library for Dyalog
application development. The folder currently has two sub-folders called Core and
Conga. These two folders are on the default SALT workdir, which means that the
]Load user command will search in them. This means that you can bring these tools
into the workspace without providing a path name, making them very easy to load
and immediately use:

]load HttpCommand
#.HttpCommand
 url←'http://hasthelargehadroncollider'
 url,←'destroyedtheworldyet.com/atom.xml'
 answer←HttpCommand.Get url
 xml←⎕XML answer.Data ⍝ Convert XML to array
 (xml[;2]∊⊂'content')⌿xml[;3] ⍝ Tags named “content”
NOPE.

Note that the initial load can be done under program control:

 ⎕SE.SALT.Load 'HttpCommand'

The two folders Library/Core and Library/Conga contain snapshots of the GitHub
repositories Dyalog/library-core and Dyalog/library-conga respectively. A release tag
in each repository will identify the exact version shipped with v16.0 and subsequent
releases.

The Documentation sub-folder in each of the above folders contain documentation
for each tool in the form of MarkDown files (.MD). If you do not have a MarkDown
viewer, you can view the files on GitHub: for example, the documentation for
everything in Library/Core can be found by selecting the Documentation folder
within https://github.com/Dyalog/library-core.

Tool (Library/Core)
Tool is a utility for loading and initialising major tool components. It currently
supports Conga, RConnect (the R interface), SharpPlot and SQAPL (the ODBC
interface). We intend to add support for other tools in the future.

Tool has two methods, New and Prepare. New returns an initialised instance of the
tool in question. Prepare materialises the tool in your workspace (so you could
save your application and no longer have external dependencies on loading interface
code) but does not initialise it (you can use New later to do this).

Example 1: Generate 10 numbers with a mean of 100 and a standard deviation of 1
(requires R with rscproxy installed on your machine):

]load tool
#.Tool
 iR←Tool.New 'RConnect' ⍝ A new instance of RConnect
 1⍕iR.x'rnorm(10,100,1)'
99.6 99.5 101.7 98.7 101.1 100.2 100.1 101.2 99.9 100.8

 Dyalog Code Libraries Reference Guide 3

Example 2: Use the ODBC interface to query the zipcodes Access database which is
included with MiServer.

 Tool.Prepare 'SQAPL'
#.SQA

At this point, the SQAPL interface has been copied into your workspace. You could
save the workspace and use it on a machine where the SQAPL workspace is not
installed (the SQAPL DLLs and the ODBC data source still need to be available).
The next steps will use the interface which was materialised by Tool.Prepare:

 sqa←Tool.New 'SQAPL'
 sqa.Connect 'zip' 'zipcodes'
0
 sqa.Do 'zip' 'select city, zipcode from zipcodes where
city like ''West Hen%'''
0 zip.s1 WEST HENRIETTA 14586 6

APLProcess (Library/Core)
APLProcess is a class which provides a mechanism for an APL process to launch and
manage other processes. The started process can either be another APL process, or a
process based on any other executable. To start a process, you create a new instance
of the APLProcess class:

Up to five constructor arguments can be provided:

1 the name of a workspace to load

2 command line arguments

3 1 for runtime (the default), 0 for development system, or a character
vector containing the name of an executable (not necessarily an apl
interpreter)

4 RIDE_INIT parameters to use for the started process

5 a log-file name to redirect output to

For example: To launch a Dyalog development environment which loads dfns.dws
with a workspace size of 200M, and then check whether it is up and running:

 proc←⎕NEW APLProcess ('dfns.dws' 'MAXWS=200M' 0)
 proc.HasExited
0

A typical use of APLProcess is to start a runtime process which uses Conga to
provide some kind of service. See the Conga Upgrade Guide for examples of this.

FtpClient (Library/Conga)
FTPClient is a simple implementation of a “passive mode” FTP client. It can be used
to get directory listings for, or retrieve and update files managed by FTP servers.
Examples of use:

 creds←'ftp.mirrorservice.org' 'anonymous' 'testing'
 ms←⎕NEW FtpClient creds

 Dyalog Code Libraries Reference Guide 4

 ms.List 'pub/'
0 pub/FreeBSD
pub/GNOME
pub/NetBSD
pub/OpenBSD
...

 30↑2⊃ms.Get 'pub/FreeBSD/README.TXT'
Welcome to the FreeBSD archive!

HttpCommand (Library/Conga)
HttpCommand is a stand-alone utility to issue HTTP commands and return their
results. HttpCommand can be used to retrieve the contents of web pages, issue
calls to web services, and communicate with any service which uses the HTTP
protocol for communications.

HttpCommand can be used in two ways:

1) Create an instance of HttpCommand using ⎕NEW
This gives you very fine control to specify the command's parameters
You then use the Run method to execute the request

 h←⎕NEW HttpCommand ⍝ create an instance
 h.Command←'get' ⍝ set the HTTP method
 h.URL←'www.dyalog.com' ⍝ set the URL
 r←h.Run ⍝ run the request

2) Alternatively you can use the Get or Do methods which make it easier to
execute some of the more common use cases.

r←HttpCommand.Get 'www.dyalog.com'
r←HttpCommand.Do 'get' 'www.dyalog.com'

Up to seven constructor arguments can be provided:

1 The HTTP command (method) for the request

2 The URL of the server

3 Any parameters, e.g. form fields, for the request

4 Any HTTP headers for the request. HttpCommand will set several
headers by default, any of which can be overridden

5 In X509 certificate if using SSL (secure sockets)

6 Any SSL flags for the request if using SSL

7 The GNU TLS priority string if using SSL

 Dyalog Code Libraries Reference Guide 5

The methods that execute HTTP requests - Do, Get, and Run - return a namespace
containing the variables:

Data the response message payload

Headers the response HTTP headers

HttpVer

the server HTTP version

HttpStatus the response HTTP status code (200 means OK)

HttpStatusMsg the response HTTP status message

PeerCert the server (peer) certificate if running secure

Rc the Conga return code (0 means no error)

In addition, HttpCommand has several utility functions to compose and parse
HTTP messages.

HttpCommand uses Conga and will search for the Conga library or copy it in as
needed. For efficiency, you may want to copy Conga, for example by using the Tool
utility before using HttpCommand, to avoid repeated copying of Conga.

Example Use Cases
1) Retrieve the contents of a web page

 result←HttpCommand.Get 'www.dyalog.com'

2) Update a record in a web service

 cmd←⎕NEW HttpCommand ⍝ create an instance

⍝ set a the HTTP command and URL
 cmd.(Command URL)←'PUT' 'www.somewhere.com'

⍝ set the id and name parameters for the "PUT" command
 (cmd.Params←⎕NS '').(id name)←123 'Fred'

 result←cmd.Run ⍝ and run it

HttpUtils (Library/Conga)
HttpUtils is a namespace containing classes and utility functions to assist in the
processing and creation of HTTP messages. Dyalog v16.0 includes two new features
that make use of the HTTP protocol. The first is support for native HTTP mode in
Conga v3.0 which greatly simplifies receiving HTTP messages. The second is the
HTMLRenderer, an experimental feature, which enables the user to build HTML5-
based applications using the Dyalog GUI object framework. HTMLRenderer uses
HTTP-like messages to communicate with callback functions in the user's
application.

 Dyalog Code Libraries Reference Guide 6

HttpUtils provides an easily accessible interface to all the information contained
in an HTTP message including headers, cookies, form data, the HTTP command
used, and any data contained in the body of the message.

HttpUtils contains two classes, HttpRequest and HttpResponse, which
provide a standard means to represent and process HTTP messages.

When using Conga, your application may function as an HTTP client, an HTTP
server, or both. When acting an HTTP client, it needs to do two things – 1) format
and send HTTP requests, and 2) receive and parse HTTP responses. When acting as
an HTTP server, also needs to do two things – 1) receive and parse HTTP requests,
and 2) format and send HTTP responses. The HttpRequest and
HttpResponse classes in HttpUtils help you do all of these things.

Conga's HTTP mode has 4 new events – HTTPHeader, HTTPBody, HTTPChunk,
and HTTPTrailer. The HttpRequest and HttpResponse classes have methods
corresponding to each of these events. Simply calling the appropriate method and
passing the data element from the event will update the class thereby giving you easy
access to all of the data elements of the request or response.

When using the HTMLRenderer Dyalog GUI object, your callback function for the
onHTTPRequest event receives HTTP request information via the data elements of
the event. Your application then needs to update those data elements forming the
logical equivalent of an HTTP response and pass that back to HTMLRenderer from
your callback function The HttpRequest.AddHtmlRenderer method is used
to parse the event data.

In this example, we simulate acting as an HTTP client and receiving the response
from a server.

:Repeat
 :If ~done←0≠err←1⊃rc←DRC.Wait clt 5000 ⍝ standard Conga loop
 (err obj evt dat)←4↑rc ⍝ break out the results

 :Select evt ⍝ which Conga HTTP mode event?

 :Case 'HTTPHeader'
 resp←⎕NEW #.HttpUtils.HttpResponse dat ⍝ create the response

 :Case 'HTTPBody'
 resp.CongaHttpBody dat ⍝ process the HTTP message body

 :Case 'HTTPChunk'
 resp.CongaHttpChunk dat ⍝ process the HTTP message body

 :Case 'HTTPTrailer'
 resp.CongaHttpTrailer dat ⍝ process the HTTP message body

 :EndSelect
 :EndIf
:Until done∨resp.IsComplete ⍝ do we have the complete resposnse?

At this point we have all of the response data in public fields.

 resp.(HttpStatus HttpStatusText)
┌───┬──┐
│200│ok│
└───┴──┘

 Dyalog Code Libraries Reference Guide 7

 resp.Headers ⍝ HTTP headers
┌────────────────┬───┐
│cache-control │private │
├────────────────┼───┤
│content-type │text/html │
├────────────────┼───┤
│content-encoding│gzip │
├────────────────┼───┤
│vary │Accept-Encoding
├────────────────┼───┤
│server │Microsoft-IIS/8.5 │
├────────────────┼───┤
│set-cookie │ASPSESSIONIDCATBDSCB=ANDNFICBLDIEHFOOINJHFOAL; path=/│
├────────────────┼───┤
│x-powered-by │ASP.NET │
├────────────────┼───┤
│date │Tue, 27 Jun 2017 12:34:02 GMT │
├────────────────┼───┤
│content-length │370 │
└────────────────┴───┘

 resp.Data ⍝ response data (edited for presentation here)
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Some really cool place</title>
</head>
<body bgcolor="#FFFFFF">
<p align="center"></p>
<p align="center"> </p>
<p align="center">Some really cool place...coming
soon! </p>
</body>
</html>

 Dyalog Code Libraries Reference Guide 8

GitHub Libraries Not Installed with v16.0

The following libraries are not currently included with the standard Dyalog APL
installation, and need to be accessed directly from GitHub:

Math (https://github.com/Dyalog/Math)
U S E This repository contains a math namespace for Dyalog APL with functions for

finding eigenvalues, eigenvectors and discrete Fourier transforms. It is based on calls
to the LAPACK library. Source code and build scripts for the libraries are included.

MiServer (https://github.com/Dyalog/MiServer)
U S E MiServer is Dyalog’s Web Server framework, written in APL. It includes “widgets”

based on SyncFusion libraries, JQueryUI, and other 3rd party components, and
contains everything you need to write a stand-alone web server. A running example
of a MiServer site which showcases the various widgets and provides information on
how to get started is available at http://miserver.dyalog.com.

APLPi (https://github.com/APLPi)
S T U D Y These repositories, separate from the main Dyalog repos, contain examples of

projects in APL which use the Raspberry Pi to perform experiments and drive robots.

http://miserver.dyalog.com/

 Dyalog Code Libraries Reference Guide 9

Foreign Function Interface

Calls to the Windows API
QuadNA workspace

S T U D Y This workspace contains functions that illustrate the use of ⎕NA to invoke the
Microsoft Windows API. Similar code could be written on any operating system, but
no samples are currently provided for Linux or macOS.

Beep Beep N times on the system speaker

Blink Set the cursor blink time

cd Change directory

DllVersion Major and minor version numbers of a DLL

DumpWindow Copy a form’s window to the Clipboard as a bitmap

Env Return the environment variables as strings

GetLocalTime Return local time as a vector

GetSystemTime Return system time as a vector

GetVersion Return operating system version

HTTPDate Current date and time in RFC1123 date format

MsgBox Pop a Windows message box

Replace Replace or insert text into an Edit or RichEdit object

SetSesh Maximise, minimise or restore the session window

SetTabs Set tab stops in a Windows ListBox object

 Dyalog Code Libraries Reference Guide 10

OLE
Object Linking and Embedding

OLE is an old technology which was the precursor to Microsoft.NET. It is still
widely supported by Microsoft Windows and may still be a suitable mechanism for
delivering APL functionality. The workspaces mentioned below have not been
modified or tested for some time, but may still be useful:

Loan workspace
S T U D Y This workspace illustrates an OLE Server using a loan sheet example. Visual Basic

and Excel client samples are included.

CFiles workspace
S T U D Y This workspace illustrates an OLE Server that allows you to read Dyalog component

files into Excel.

DCOMReg workspace
U S E This workspace contains functions that may be used to register an OLE Server,

written in Dyalog APL, for DCOM.

OLEAuto workspace
S T U D Y This workspace illustrates how you can access OLE Servers such as Microsoft

Access and Microsoft Excel.

OLEAsync workspace
S T U D Y This workspace illustrates how an OLE Server written in Dyalog may be called so

that it executes in parallel (asynchronously), possibly on a different computer.

Shortcut workspace
S T U D Y This workspace illustrates how you may call OLE objects via non-standard

interfaces. This example creates a shortcut on your desktop.

 Dyalog Code Libraries Reference Guide 11

Development tools

BuildSE workspace
U S E This workspace is used to build the default APL session. To configure the session

differently, you may edit the functions, rebuild and subsequently save the session.

 Dyalog Code Libraries Reference Guide 12

Display workspace
Exhibiting array structure

U S E The DISPLAY workspace contains a single function called DISPLAY. It produces a
pictorial representation of an array, and is compatible with the function of the same
name which is supplied with IBM’s APL2. The DISPLAY function in the UTILS
workspace is very similar, but employs line-drawing characters. A third form of
presentation is provided by the DISP function which is also in the UTILS workspace.

As there is nothing else in the DISPLAY workspace (the description is stored in its
⎕LX rather than in a variable) the function can conveniently be obtained by typing:

)COPY DISPLAY

DISPLAY is monadic. Its result is a character matrix showing the array with a series
of boxes bordering each sub-array. Characters embedded in the border indicate rank
and type information. The top and left borders contain symbols that indicate rank. A
symbol in the lower border indicates type. The symbols are defined as follows:

→ Vector

↓ Matrix or higher rank array

⊖ Empty along last axis

⌽ Empty along other than last axis

∊ Nested array

~ Numeric data

- Character data

+ Mixed character and numeric data

∇ ⎕OR object

Example:

 DISPLAY 'ABC' (1 4⍴1 2 3 4)
┌→────────────────┐
│ ┌→──┐ ┌→──────┐ │
│ │ABC│ ↓1 2 3 4│ │
│ └───┘ └~──────┘ │
└∊────────────────┘

 Dyalog Code Libraries Reference Guide 13

Example:

 AREAS←'West' 'Central' 'East'

 PRODUCTS←'Biscuits' 'Cakes' 'Rolls' 'Buns'

 SALES←?4 3⍴100 ⋄ SALES[3;2]←⊂'No Sales'

 DISPLAY ' ' PRODUCTS⍪.,AREAS SALES
┌───┐
│.┌→────────────────────────────────────┐.│
│.↓............┌→───┐.┌→──────┐..┌→───┐.│.│
│.│............│West│.│Central│..│East│.│.│
│.│............└────┘.└───────┘..└────┘.│.│
│.│.┌→───────┐..........................│.│
│.│.│Biscuits│.14...76.....46...........│.│
│.│.└────────┘..........................│.│
│.│.┌→────┐.............................│.│
│.│.│Cakes│....54.....22...........5....│.│
│.│.└─────┘.............................│.│
│.│.┌→────┐...........┌→───────┐........│.│
│.│.│Rolls│....68.....│No.Sales│.94.....│.│
│.│.└─────┘...........└────────┘........│.│
│.│.┌→───┐..............................│.│
│.│.│Buns│.....39.....52.........84.....│.│
│.│.└────┘..............................│.│
│.└∊────────────────────────────────────┘.│
└∊──┘

Example:

 ⎕SM←↑('PAULINE' 10 10)(21 10 20)('FARNHAM' 10 25)

 DISPLAY ⎕SM
┌→────────────────┐
↓ ┌→──────┐ │
│ │PAULINE│ 10 10 │
│ └───────┘ │
│ │
│ 21 10 20 │
│ │
│ ┌→──────┐ │
│ │FARNHAM│ 10 25 │
│ └───────┘ │
└∊────────────────┘

 Dyalog Code Libraries Reference Guide 14

Math workspace
Extended mathematical functions

U S E This tool provides access to LAPACK; it is no longer shipped as part of the standard
Dyalog APL installation, but is available on GitHub as the repository
https://github.com/Dyalog/math.

The code consists entirely of dynamic functions, and illustrates encapsulation
through dfns. There are five functions (the old Domino function is no longer relevant,
now that APL supports complex numbers natively).

Eigen takes an n×n real or complex matrix and returns an
(n+1)×n result of Eigen: Values⍪⍉↑Vectors

 ┌───┬───┬───┬───┐
 │ v a l u e s │ ── Eigen values
 ├───┼───┼───┼───┤
 │ v │ v │ v │ v │ ┐
 ├ e ┼ e ┼ e ┼ e ┤ │
 │ c │ c │ c │ c │ │
 ├ t ┼ t ┼ t ┼ t ┤ ├─ Eigen vectors.
 │ o │ o │ o │ o │ │
 ├ r ┼ r ┼ r ┼ r ┤ │
 │ │ │ │ │ ┘
 └───┴───┴───┴───┘

Fourier takes a real or complex array right argument and performs
a Fourier Transform, or its inverse.

Hermite Hermite polynomials

Laguerre Laguerre polynomials

Legendre Legendre polynomials

https://github.com/Dyalog/math

 Dyalog Code Libraries Reference Guide 15

Util workspace
APL utility functions

U S E The UTIL workspace contains a number of APL utility functions. The current list of
functions with brief descriptions is contained in the variable notes.contents:

)load util
C:\Program Files\Dyalog\Dyalog APL-64 16.0 Unicode\ws\util.dws
saved Thu Jun 22 20:15:28 2017

 notes.contents

Utility Functions

Edit (double-click or Shift-Enter) <function name> in the
following list for a description. Within the description, edit
<See also:> names for related functions and <#.function> to
view the code.

 ss ⍝ Approx alternative to xutils' ss.
 ∆VARS ⍝ Global variable cross-reference.
 ∆MPUT ⍝ Put array on disk.
 ∆MAPPEND ⍝ Append array ⍺ to map file ⍵.
 APLVERSION ⍝ Interpreter version.
 BIG_ENDIAN ⍝ Machine is "big-endian".
 BMVIEW ⍝ View BitMap Files.
 CENTRE ⍝ Centre TEXT in W columns.
 CLIP2PR ⍝ bmp image of clipboard to default printer
 DETRAIL ⍝ Remove trailing blank columns
 DIR ⍝ Directory contents.
 DISP ⍝ Boxed sketch of nested array.
 DISPLAY ⍝ Boxed display of array.
 DOIF ⍝ Return next line number,
 ECHO ⍝ Value of environment variable ⍵.
 ENLIST ⍝ Flatten array.
 FIND ⍝ NAMES in workspaces in DIRS.
 FNGREP ⍝ Matches of regular expression V in fns F
 FNREPL ⍝ Replace first string with second in fns/ops
 FTREE ⍝ (Approximate) function calling tree.
 Globals ⍝ Name localisation.
 KEYPRESS ⍝ Trace and decypher KeyPress events
 LJUST ⍝ Left justify text
 MAKEMAT ⍝ Return VEC as MATrix
 MATRIX ⍝ Converts scalars and vectors
 NTREE ⍝ Tree diagram of named object
 PROP ⍝ Display Property for each item in obj tree.
 PROPS ⍝ Display ALL props for NODE.
 RJUST ⍝ Right justify text
 SET ⍝ (NAME, VALUE) for environment vars.
 SETWX ⍝ Set ⎕WX to ⍵ in namespace ⍺ and children.
 SM_TS ⍝ Convert date format : ⎕SM(IDN) ← 3↑⎕TS.
 SNAP ⍝ Round values ⍵ to nearest ⍺.
 Time ⍝ Execution time for expression.
 TRAV ⍝ Traverse object tree.
 TREE ⍝ Display tree
 TS_SM ⍝ Convert date format : 3↑⎕TS ← ⎕SM(IDN)
 WSDIFF ⍝ Workspace differences.
 WSPACK ⍝ Shares Identical arrays.
 XVAR ⍝ all lower case vector
 XWS ⍝ Evaluate expr in saved wsid.

 Dyalog Code Libraries Reference Guide 16

As mentioned at the top of notes.contents, more detail is provided for each
function in notes. For example:

 notes.DISPLAY

cmat ← #.DISPLAY array ⍝ Pictorial representation of
nested array.

The argument is displayed with a series of boxes bordering each
sub-array. Characters embedded in the borders indicate array
shape and type.

Shape: ↓ → Non-zero axis.
 ⌽ ⊖ Zero axis.

Type: ∊ Nested array.
 ~ Numeric.
 - Character.
 # Namespace reference.
 ∇ ⎕OR object.
 + Mixed type.

Prototypical items of empty arrays (⌽ ⊖) are exposed.

 1 DISPLAY 'ABC'(1 4⍴1 2 3 4)(0 1 0⍴0)(⎕SE #) ⍝ Smooth
characters.
┌→────────────────────────────────┐
│ ┌→──┐ ┌→──────┐ ┌┌⊖┐ ┌→───────┐ │
│ │ABC│ ↓1 2 3 4│ ⌽↓0│ │ ⎕SE # │ │
│ └───┘ └~──────┘ └└~┘ └#───────┘ │
└∊────────────────────────────────┘

 DISPLAY 'ABC'(1 4⍴1 2 3 4)(0 1 0⍴0)(⎕SE #) ⍝ Printable
.→--------------------------------.
| .→--. .→------. ..⊖. .→-------. |
| |ABC| ↓1 2 3 4| ⌽↓0| | ⎕SE # | |
| '---' '~------' ''~' '#-------' |
'∊--------------------------------'

See also: DISP

 Dyalog Code Libraries Reference Guide 17

dfns
Dyalog’s lambda

Dfns are a simplified form for defining functions and operators. While they sacrifice
certain features of traditionally-defined functions (or tradfns) such as control
structures, they give programmers a compact form for simple functions and a clear
way to:

• write functions that define and localise their own tools

• use anonymous functions, eg {⍵/⍳⍴⍵} to minimise repetition or avoid assigning
names to functions or arrays that will have no further use

DDB workspace
U S E This workspace contains a lightweight database system that can replace a SQL

database for many simple applications. See the section on Storage for details.

dfns workspace
S T U D Y This workspace, kept up to date on the Web, is an encyclopaedia of examples of

programming with dynamic functions and operators.

Eval workspace
S T U D Y This workspace contains tools for studying the evaluation of expressions using

syntax rules that include but are not limited to Dyalog’s. It is not optimised for
performance, but could be used in applications for processing custom domain-
specific languages.

Min workspace
S T U D Y Implements a minimal programming language using only dynamic functions

Max workspace
S T U D Y Implements an extended version of the MIN language

Tube workspace
S T U D Y Demonstrates graph searching, applied to the underground rail networks of London,

Paris, New York and other cities

 Dyalog Code Libraries Reference Guide 18

Graphical User Interfaces

Windows GUI
Dyalog APL includes a set of built-in classes which provide easy access to the Win32
API, creating objects such as forms, menus, buttons, edits, grids and so on. These
features will remain fully supported by Dyalog for a long time to come. However,
they are no longer in active development, simply because Microsoft has more or less
ceased enhancing the Win32 API.

Version 16.0 includes an HTMLRenderer object which allows the creation of UI
under Microsoft Windows, Apple macOS and Linux – which is still experimental,
but expected to replace the Windows GUI as the preferred vehicle for producing user
interfaces.

The tools mentioned in this section will remain supported until further notice,
although several of them are becoming rather dated.

Arachnid workspace
S T U D Y This is a card game that demonstrates various Dyalog GUI features, including the use

of the BitMap and Image objects.

CPro workspace
Causeway Pro framework for GUI

U S E Causeway Pro is a framework for designing and building GUIs (graphical user
interfaces) for applications.

The workspace includes samples from the tutorial in Getting Started With Causeway.

Note that the workspace predates user-defined classes in Dyalog and includes its own
implementation in the Class namespace.

WDesign workspace
A R C H I V E This workspace contains a graphical tool for designing GUI forms and populating

them with controls. It resembles tools widely used for this purposes in other
languages. The developer defines a form by gesturing with the mouse; the tool
provides immediate visual feedback, and finally writes a function that recreates the
form.

WDESIGN is invitingly easy to use and automates work that in other languages is
laborious. Its use is now deprecated for a combination of reasons.

The ability to lay out forms without mastering the corresponding APL expressions is
deceptive. Getting a GUI working requires understanding the code behind it. A
beginner is better served by studying and trying examples than using WDESIGN.

The Dyalog expressions required to generate a form are very simple. For someone
who has learned them, WDESIGN does not save much work, and a human can write
clearer GUI code than WDESIGN does.

 Dyalog Code Libraries Reference Guide 19

The chief value of WDESIGN is in graphically positioning elements on a form. But
Dyalog developers rarely invest heavily in interface design; clear and simple is the
common standard. For this standard of presentation, it is hardly more difficult to
guess the desired control coordinates and then tweak them.

WDESIGN does not allow you to develop GUIs without understanding the code behind
them. The extra value of precise visual positioning is outweighed by clearer code and
writing without a development tool. A beginner’s time is better invested mastering
GUI code than learning WDESIGN.

WIntro workspace
S T U D Y The WINTRO workspace contains a tutorial introduction to the GUI features in

Dyalog. It is intended to convey the general principles of how the system works,
rather than providing specific information. A more detailed set of tutorials are
provided in the WTUTOR workspace.

The tutorial consists of an executable sequence of lessons with instructions and
commentary.

WTutor workspace
S T U D Y The WTUTOR workspace contains a more elaborate set of tutorials to help you explore

further aspects of Dyalog’s GUI support.

WTutor95 workspace
S T U D Y The WTUTOR95 workspace contains an additional set of tutorials.

 Dyalog Code Libraries Reference Guide 20

Object orientation
User-defined classes

The guides OO for APLers and OO for Impatient APLers introduce the use of native
Dyalog support for user-defined classes. These examples were created for version
11.0, which was the first version that supported user-defined classes. The examples
are a little dated, but still valid.

OO4APL folder
S T U D Y This folder contains workspaces supporting the examples in OO for APLers.

 Dyalog Code Libraries Reference Guide 21

Presentation

SharpPlot
SharpPlot is a toolkit for producing scalable vector graphics to a very high standard,
and is a cross-platform replacement for the APL workspace once known as RainPro.
SharpPlot also includes the document composition capabilities of the old NewLeaf
workspace.

The SharpPlot workspace includes extensive examples in the Samples namespace.
The HTMLRenderer object provides a simple mechanism for viewiing the results:

 svg←Samples.Sample.RenderSvg #.SvgMode.FixedAspect
 'sp' ⎕WC 'HTMLRenderer' svg

You can produce a list of functions in the Samples namespace using:

 Samples.⎕nl ¯3
 Animations Bar Box Bubbles Cloud Contour Gantt Histogram
 Line MinMax MultDial MultNested MyReport Pie Polar
 Response Sample Scatter Step Tower Trace TreeMap
 Vectors Venn XBar

 Dyalog Code Libraries Reference Guide 22

Storage

DDB workspace
A lightweight database system

U S E The functions in the ddb namespace are used to maintain simple data arrays in a
single mapped file. They provide a robust alternative to an ‘inverted’ component file,
as long as the maximum size of the data in each field may be fixed at creation time.

create Create table

remove Remove table

append Append row/s to table

retain Retain only selected rows

open Open table (read/write)

defs Field definitions

get Get field/s from table

put Replace values in field(s)

 Dyalog Code Libraries Reference Guide 23

Files workspace
Handling files and directories

U S E This workspace provides cover functions for common operations in the file system,
encapsulating both native file-system primitives such as ⎕NTIE and Windows API
calls.

See the source for function syntax.

AppendText Appends single-byte text to a named file

Copy Copy one file to another; protected mode optional

Delete Delete a named file

CreateTemp Create a temporary file based on a file name template

Dir Directory information for a filepath

DirX Extended directory information for a filepath

Exists Boolean result indicates whether file exists

GetCurrentDirectory Get current directory

MkDir Make a directory

Move Named file to another location

PutText Write single-byte text to a file, accepting scalar, vector,
matrix or nested character arrays

RmDir Remove a directory

ReadAllLines Read a text file as single-byte text; return lines as nested
character vector

ReadAllText Read a text file as single-byte text

SetCurrentDirectory Set current directory

 Dyalog Code Libraries Reference Guide 24

SQAPL workspace
U S E The ODBC interface is provided by SQAPL for ODBC, which is included with

Dyalog APL for Windows and distributed under licence from Insight Systems ApS.

SQAPL for ODBC is an interface between APL and database drivers which conform
to the Microsoft ODBC specification.

ODBC drivers exist for a wide variety of databases, from simple drivers which give
limited access to ‘flat’ DOS files, through more sophisticated local database
managers such as Access, dBase and Paradox, to multi-user DBMS systems such as
Oracle, Ingres, Sybase or DB2 running on remote hosts.

See the separate ODBC User Guide for more details.

 Dyalog Code Libraries Reference Guide 25

Threads
Dividing a process between multiple threads

Lift workspace
S T U D Y This workspace simulates a lift taking people to the floor of their choice. Two lifts

are used, but the example could easily be extended to more.

People arrive at the lift entrance pseudo-randomly. People get into the lift one at a
time, in orderly fashion. When the lift is full, if there is nobody waiting, the lift door
closes and the lift rises. The lift stops only at floors where people want to get out.
People get out of the lift in a disorderly fashion.

Each lift and each person in the simulation is implemented as a separate thread.

	Introduction
	Core Library
	Tool (Library/Core)
	APLProcess (Library/Core)
	FtpClient (Library/Conga)
	HttpCommand (Library/Conga)
	Example Use Cases

	HttpUtils (Library/Conga)

	GitHub Libraries Not Installed with v16.0
	Math (https://github.com/Dyalog/Math)
	MiServer (https://github.com/Dyalog/MiServer)
	APLPi (https://github.com/APLPi)

	Foreign Function Interface
	Calls to the Windows API
	QuadNA workspace

	OLE
	Loan workspace
	CFiles workspace
	DCOMReg workspace
	OLEAuto workspace
	OLEAsync workspace
	Shortcut workspace

	Development tools
	BuildSE workspace
	Display workspace
	Math workspace
	Util workspace

	dfns
	DDB workspace
	dfns workspace
	Eval workspace
	Min workspace
	Max workspace
	Tube workspace

	Graphical User Interfaces
	Windows GUI
	Arachnid workspace
	CPro workspace
	WDesign workspace
	WIntro workspace
	WTutor workspace
	WTutor95 workspace

	Object orientation
	OO4APL folder

	Presentation
	SharpPlot

	Storage
	DDB workspace
	Files workspace
	SQAPL workspace

	Threads
	Lift workspace

